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Linear operators, adjoints and kernels

Pair of vector spaces X', ) with topological duals X, )’

S(RY) C x, ¥, X", Y C S'(RY)

m Linear operator G : X — )Y and its adjoint G* : )/ — X"

(f,Gp) = (G*f, p)

m “Integral” representation: g € S'(R? x R?) = Schwartz kernel of G

G:om | 90 y)e(y)dy G rpmr | gy, )e(y)dy
R R
m Self-adjoint operator
The operator H is said to be self-adjoint if H{p} = H*{} for all ¢ € S(R%)

& the kernel of the operator is symmetric




Positive-definite kernel

Definition
A symmetric kernel function A : R? x R? — R is said to be positive semi-
definite (or positive definite, for short) if

N N

Z Z Zmh (X, Ty )2n > 0

m=1n=1

forany NeN, z,...,xzy € R and 21,...,2x € R.

m Equivalent conditions
= The square matrix H € RY*N with entries [H,,n = h(Tom, x,) is
positive definite for any choice of z1,...,zy € R%; i.e.,

z'Hz = (Hz,z) > Oforallz € RY &  The eigenvalues of H are non-negative

= The operator H : p — h(-,y)e(y)dy is positive-definite; i.e.,
R4

(H{p}, o) >0 forallp € S(RY)

Aronszajn’s theorem

Theorem (Moore-Aronszajn)
The kernel function h : R? x RY — R is symmetric positive (semi-)definite
if and only if there exists some Hilbert space H and a families of elements

{fo}wera in H such that
h<m’y) = <fw7fy>7-£- (1)

In particular, there is a unique Hilbert space H,.,—the reproducing kernel
Hilbert space of h—such that (1) holds with f, = h(-, x).

Sketch of proof (direct part):

N N
E E zZmh mmawn

m=1n=1

N
Z fmmafmn HZn

1n=1

Zm S Z 2 fan ) (bilinearity of (-,-))

Jj=1

A:ﬁMZ
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I
-
i M: I
I,
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2. RKHS

In essence, any Hilbertspace H = {f : R - R : || fll% = /{f, /) < oo} C
S’(R?) whose members f are “ordinary”—but, not necessarily bounded—functions
on R is a RKHS.

Definition
The Hiloert space H C S’(RY) is said to be a reproducing kernel Hilbert
space (RKHS) if the shifted Dirac impulse 6(- — o) € H' for any rq € R9.




2.1 Definition of reproducing kernel

0z = 0(- —x0) € H' = existence of 6}, = R{dz,} € H such that

f(@o) = 0ay (f) = (0(- — o), f) = (05 )2,

for all f € H and any o € R?

Definition
The reproducing kernel of a RKHS on R? is the function /4 : R? x R? — R
such that

(i) h(zxo,-) € H forall zg € R?
(i1)  f(xo) = (h(xo,-), f)3 forall f € H and o € R%.

Reproducing kernel: fundamental properties

Proposition: Let H be a RKHS on R%. Then, its reproducing kernel h :
R¢ x R — R has the following properties.

1. Itis unique.

2. h(z,y) = (h(z,-), h(-y))n

3. Symmetry: h(x,y) = h(y,x) forall x,y € R?

4. Positive definiteness.

5. The linear span of {h(x, ), x € R%} is dense in H.

6. Link with the Riesz map: The operator R : ¢ — R{p} = [p. h(-, y)e(y)dy
is a unitary mapping ' — H with the property that (u, Ru) = |ul|3,,
for all u € H’ (the dual space of H).

7. Invertibility: The operator R admits a unique inverse R=! : H — H’
with the property that (R~ f, f) = || f||3, for all f € H.
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Elements for the proof:
= Symmetry: h(z,y) = (h(x,-),h(y, ))n = (h(y,-), h(x, ) = h(y,x)

= Unicity: h is the kernel of the Riesz map H' — H

f(®o) = {0 = z0), f) = (R{O(- — o)}, fla = (h(-,20), [l
& h(, o) = R{0(- — o)}

= Positive definiteness: link with inner product

= Denseness in H: Consider any g € ‘H that is orthogonal to the linear
span of {h(x, )} xerae. Then, (g, h(x,-)) = 0 for every € R?, which,
by the reproducing kernel property, is equivalent to g = 0.

= Link with Riesz map and invertibility follow from Riesz’ theorem
(v,u) = (v*;u)y = (Rv,u)y = (v, R u)y = (v,u*)y

forallv e H andu € H

11

2.2 Decay and continuity properties

m Control of the rate of algebraic decay/growth: a € R

[ flloo.a = ess sup (|f(2)[(1 + [|z[))*)

xcRd

= sup (|f(x)[(1+ ||=||)*) (if fis continuous)
xR

Loo,aRY) = {f € S’ (R?) || f[lo,a < +00}

Ch,o(R?) = {f : R* - R continuous and s.t. || f||oo,a < +00}.

Both are Banach spaces with
S(Rd) - Cb,OH—/D’(Rd) C Cb,oz(Rd) C LOO,a(Rd) C S/(Rd)a

forany 5 > 0

12




Continuity and decay (Cont’d)

m Continuous functions of slow growth

For any continuous function f € S’'(R%), there exists some (critical) expo-
nent g € R such that f € C, o(RY) for all o < o

1flloo, o

& |f(z)| < W

m Kernel spaces

Ch.a(REXRY) C Lo o(RExRY) C S'(RY x RY)

IA(; Moo, = sup |h(z,y)|(1 + [lz]))* (1 + [ly[)"
x,ycRd

Cpo(RIxRY) = {h : RYxR? — R (jointly) continuous and s.t. ||, -)||se.a < ~|—oo}

13
RKHS of continuous functions
H C Ch.o(RY) = | fllco.a < C|flln, forall f € H  (continuous embedding)
4
|f (o)l = [{f,6( —2o))| < (1 + [lzol) ™[I flloc.a < Caoll f 2
\
6(- —mo) : [+ f(2o) §(-—xo) € H' (RKHS property)

Theorem 1: A bivariate function h : R¢ x RY — R is the reproducing kernel of a
RKHS #H C (), »(R?) with « € R if and only if it is positive-definite, separately
continuous in each variable, and such that A(-, -) € Leo o(R? x R?). In particular,
this implies that

1. h(zg,) € Cp,o(R?) for any o € R?
2. A5 )loc,a = SUPg yera [A(, y)| (1 + [l])* (1 + [ly[)* < oo
3. An,n = Supgepa h(z, ) (14 ||z])** < 0o

with Conditions 2. and 3. being equivalent.
14




Equivalence of Conditions 2. and 3.
Key property: h(iB, y) = <h(£13, ')7 h(7 y)>7‘[

PD-kernel equivalent of Cauchy-Schwarz Inequality: |h(x, y)|?> < h(z, z)h(y,y)

U

Ih(, e = sup |(1+[z])*h(z, y)(1 + ly])*]?

x,ycR4

< sup (14 [z]))**h(z, z)(1 + |lyl)**h(y, y) = A},
x,ycRd

Conversely,

(L + llzl)*h(2, y) (1 + [yl < [[A()oo,a
so that

Aan = Squsd(l + [[z]))*h(z, 2)(1 + [|z]))* < [|A(,)]loc,ar
xTc

from which we deduce that A, , = ||h(+, ) |lco.a-
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Simplified version of theorem: hc Cp, ,(R? xRY) = H C () o(R?)

m Boundedness: H C Lo o(R%)

()] = [(h(=; -), fnl
< (@, )l 1 f [l = v h(z, ) [| ]l (Gauchy-Schwarz)

2 oY o
I1f1I%0,0 = sup [f(@)]" (1 + [l])** < sup (14 [|2])**h(x, 2) |5 = Ana [ f]1F < oo
xR rcRd

m Continuity: H C C, o(R?) C Ly, o(RY)

(@) = f(@o) > = {h(=, ) — h(@o, ), Fl
) = h(wo, )EIfI3%  (Cauchy-Schwarz)
() + (o 0)  2h(ar20)) [ 1

h e C’b,a(Rd x RY) = limg g, h(x, ) + h(xo, o) — 2h(2, 20) =0

= limg_a, |f(x) — f(zo)]> =0
16




Turning L,(R%) into a RKHS

m [,(R?)is NOT a reproducing kernel Hilbert space ?

Candidate reproducing kernel (- — @) : ¢ — (J(- — xo), ¥) = ©(xo)

= 6(- —mo) ¢ (La(RY))' = Ly(RY)

= f(=o) is not well defined pointwise for all f € Ly(R9)

m Solution = Smoothing

“Smoothing” operator G : Ly(R%) — H C Cy o(R%)

Proposition
Let g : R?xR? — R be a kernel such that g(z, -) € La(IR?) for any fixed z € RY,
Then, the output of the linear operator G : w — f = [p. g(-, y)w(y)dy is well
defined pointwise for any w € LQ(Rd). If, in addition, there is some a € R such
that

sup (1 + [lz[)*(lg(x, )L, @e) < oo,

xzcR4
then G is bounded from Ly (RY) — Lo o(R?).

17

2.4 RKHS associated with invertible operator

m Native space

Hi = {f R 5 Rst | flla = [ILf|py@ay < 00} € La(RY)
Coercive regularisation operator: L : Hy, — La(R9)

lfllpa@ey < MLfllzo@ey = [l

/

o continuity & specifies a valid norm
coercivity

== Existence of (stable) inverse operator: G = L~! : L, (Rd) — Hi,

m Inner product:  (f, g)#, = (Lf,Lg) = ((L*L)f, g)
——
Frem!

m Riesz maps

R =L*L:H, — H],
R=G*G = (L*L)"': H{ — Hy

18




Reminder: Dual of a Hilbert space

H
RKHS

Riesz isomorphism

(u, v*)q = (u,v) = (R u, v)gy

The dual of a Hilbert space H is a Hilbert space H’ with H' = R™1(H).

19

Determination of reproducing kernel

h(z,y) =R{6(- —y)}(x) with R = (L*L)"!:H} — HL
Hypothesis: h(zx,-) € Cy, o(R?) (continuous and bounded) for any (fixed) = € R?

= Hi, C Cp(RY) is a RKHS (by Theorem 1)

m Explicit determination for LS| (=convolution) operator

L(w) = F{LJ}(w): frequency response of operator

h((l),y) - pL*L(m - y) where pL*L(aj) =F { |E(i)|2 } ($)

Necessary (and sufficient) condition for coercivity: ¢ = ess inéd |L(w)| >0
we

. . d p d
LA, = [ V@) o = ¢ [ 1fe)P g = @Ik,

20




2.5 Factorization of reproducing kernel

m Motivation: Extension for non-coercive regularization operator
= Rieszmap: R=GG* : H' - H H — Ho —H with Ho C La(RY)

= Inverse operator: G = L~! with Schwartz kernel g(z,y) = G{5(- — y) }(z)

Theorem 2

Let H C Oy o (R?) be a RKHS equipped with the inner product (£, g)3, = (Lf, Lg).
Then, there exits a unique continuous operator L=! : Ly(RY) — L., (R?) and a
Hilbert space Ho C L2(R%) such that the Riesz map from H' — H factors though
HoasR=L7"'L7 " :H — Hy— H.

The Schwartz kernel of L ~! denoted by g(-, -) satisfies the estimate

sup (1+ [|lz[)*llg(@; )| Lo @) = v/ Aan < 00

rcRd

and is linked to the reproducing kernel h(-, -) of H by

h(z,y) = /Rd 9(z, 2)g(y, z)dz

9(y,z) = L{h(-, y)} ().

21

Example 1: RKHS associated with an ortho-basis

m Orthonormal system:  {¢,, }nen With ¢, € C,(R?) N Ly(RY)

m Inner product:  (f,g)y = Z(qbn,f><¢mg>

neN

= V = span{¢y }, ., equipped with (-, -),, is a Hilbert space

Simplified setting
m Generic form of reproducing kernel

hy(z,y) = Z Gn(T)Pn(y)

neN

V=V with VC LyR%)

m Orthogonal projector Projy, : La(R?) — V

Proj,{f}(x) = (f. hy(z,")) = > _ ¢n(x)(f. bn)

neN

m Factorization (trivial): Projy, o Proj,, = Projy,

hV(wvy) = <hV(w7 ')7hV('ay)>

22




Example 2: RKHS of bandlimitted functions

m Subspace of bandlimited functions in Lo(R) with Nyquist frequency wax = 7

Heine = {f € S'(R) : (sinc * f) € Ly(R)}

m Regularization operator

Line : @ F sinc * ¢ sinc(x) = = F Y1 ra}z)

m Reproducing kernel

hsinc(z,y) = sinc(x — y) = Z sinc(z — k)sinc(y — k)
keZ

m Reproduction formula = Shannon’s Sampling theorem

Vf € Heme:  f(z) = (sincx f)(z) = Y (f,sinc(- — k)) sinc(z — k)

keZ

= f(k)sinc(z — k)

kEZ

23

Example 3: Subspace of polynomials

m N =span{p;} C Cp(R) with py(z) =1 Alternative solution(s)
m Biorthogonal system: (4, p1) with (0, p1) =1 (¢1,p1) with (¢1, p1) = 1
m Inner product: (f, g)ar = f(0)g(0) = (4, f){4, g9) (fr9)n = (91, f)(d1,9)

= N = span{p; } equipped with (f, g) »r is a RKHS

m Reproducing kernel

hw(z,y) = pi(x)pi(y) =1

m Projection operator: ProjA{f} = (4, fim ProjA{f} = (é1, f)m

but, there is no factorization ... ?1?

24




2.6 RKHS associated with derivative operator

d
m Key characteristics L=D= 1
m Green’s function(s) pp such that D{pp} = 9
- Causal solution: 14 (x)
- Canonical solution:  isign(z) = }"{Jiw} () =14(z) — 5
m Null space of dimension Ny = 1:
Np ={q € S'(R) : D{g} = 0} =span{p1} with pi(z)=1
m Related operators
® Adjoint: D* = —D (Df, @) = |jLOO /f z)dz = (f, —

= D*D = —D?
m Green'’s function of D*D:

poro(e) = F{ 5 | (0) = ~3lal € Coa(®)

w2

25

Derivative operator (Cont’d)

m Native space

Hp ={f:R—=Rst.Df € Ly(R)} CCy_1(RY)

Proposition
Hp equipped with the inner product (f, g)%, = (Df,Dg) + f(0)g(0) is a RKHS
whose reproducing kernel is

ho(z,y) = 3 (2| + |y — |z —y|) +1

hp(-,y) € Cp,—1(R) forany y € R (first-order of growth)

26




Proof by verification
1) Hp is a Hilbert space
= (Df,Dg) is a semi-inner product
= (Df,Dfy=0 < f=bp € Npwithb; € R

= [|fI7, = (Df.Df)+[fO)> =0 & feNpandf(0)=0 < f=0 (unicity)

2) Check reproducing kernel property of hp (z,y) =  (|z| + |y| — |z — y[) + 1

D{hp(-,y)}(x) = 3 (sign(z) —sign(z — y)) = Ljoy)(z) € L2(R) = hp(-,y) € Hp
D*D{hp(-,y)}(z) = =D{3 (sign(-) —sign(- —y)) }(z) = —6(z) + é(z — y)
ho(0,y) = 5 (10| + |yl —0—y)) +1=1

Hence, for all f € Hp,

<f7 hD('ay»'HD = <Df7D{hD(>y)}> + f(()) x 1
= (/,D*D{hp(,y)}) + £(0)
= (= f(0) + f(y) + £(0) = f(y).

27

Native space for derivative operator
Hp: RKHS equipped with the inner product (f, g)x, = (Df,Dg) + f(0)g(0).

m Direct sum structure

= “Quotient” space Hp /Ni:  Hp,s = {f € Hp : (6, f) = f(0) = 0}
= RKHS with inner product (D f, Dg)

= Null space Np = {f € Hp : D{f} = 0} = span{p; }
= RKHS of dim Ny = 1 with inner product (f, g)a7, = f(0)g(0)

= | Hp =Hp,s D NL

Every function f € Hp has a unique decompositionas f = f1 + fo
= f1 = (Id = Projy, ){f} = f— f(0)p1 € Hps
s f2 =Projy, {f} = (3, f)p1 = f(0)p1 € Np

28




2.7 Operators with non-trivial null spaces

m Specification of native space: first attempt L:Hy, — Ly(RY)

Hioxt = {f € S'(RY) : ||Lf’|%2(Rd) < oo}

“Extended” null space: Np ext = {q € HL ext : L{q} = 0}.

Potential problem for d > 1 as NL,ext may not be finite-dimensional !!!

m Solution: Restriction of null space to NVf, = spabn{pn},]ﬁ1 C NLext

Fixed quotient space:  Hq = Hrext/Niext = Hi /N

Proposition
The native space of L, Hy, = Hq @ N1, where N, is a finite-dimensional null space
of L endowed with the inner product (-, -) a1, , is a Hilbert space for the inner product

<f7 g)’HL = <Lf7 Lg>L2 + <PI’OjNL{f}, PI"OjN'L {g}>NL

where Proj ., is a projection operator from Hp, — M.

29

2.7.1 Hilbert-space structure of null space

m Motivaton: Ls =w = s=L"1w?
Remove the null-space ambiguity by imposing Ny linear boundary conditions: ¢(s) = 0.

= Admissible operator L : Hy, — Lo (R%)
= Null space: Ny, = span{p, }°, equipped with a norm || - || : Hr, — R*

m Linear “boundary” functionals ¢ : Hp, — RNo

f'_>¢(f):(<¢1af>7"'><¢Noaf>)

Definition

Let L : H1, — Lo(R?) be a spline-admissible differential operator with a null space
N, of dimension Ny. The pair (L, ¢) is said to be admissible if there exist two
constants B > A > 0 such that

Allfllx < l@(Hllz < B LAz, +[[fllv),  VF € He.

Lower bound: ¢(q) =0 < ¢=0 Vge M, Upperbound < &, € H}
30




Biorthogonal system

m Basis for Ny, p = (p1, ce ,pNo)

m Analysis functionals: ¢ = (¢1,...,énN,)

m Biorthogonality relation

<¢m7pn> = 5m,n ~ (b(pn) =€, -~ <¢7pT> = INO
m Projector onto Vg, = span{p,}°, 1L N/ =span{¢,} °,

n=1

PI‘OjNL : Hi —>NL

No
Fe) (b, f)p
n=1

31

RKHS associated with null space

No
n=1

m Biorthogonal system: {(¢,,, p»)}

Proposition
Let (¢, ) be a biorthogonal system for N1, C Cy, o(RY). Then, N1, =
Span{pn 2, equipped with the inner product

No
(fr90n =D (b0 [)(dnr9) = Re{f}9), f.g €M

is a RKHS with reproducing kernel

P{5 _y an

& VfeN: (Iflla = ()l

32




Dual of null space

No
n=1

m Biorthogonal system: {(¢,, pn)}

Proposition

equipped with the inner product

Ny

n=1

The dual of Vi, = span{p, }.°, is the Hiloert space N/ = span{¢,, = p*} "

(9w = Y (ons ) onr g7) = Rpf*,9%), [5,9" €M
=/

n=1

N{, = span{¢, = Rgpn }

Nop
Rp:f=> polpn. f)
n=1

NL = Span{pn = Rp¢n}

Null Reproducing kernel:
Riesz maps space No
Pn(®)pn(y)
" =Ref |« — f ;
Rg:f =Y onldn, f)
n=l 33
Summary of operators

Description Operator Kernel
No

Riesz map N] — N1, R, an(a:)pn(y) reproducing kernel
'n,]\?ol

Riesz map Ny, — N, Rg Z Pn()Pn(y)
nj\?ol

Projector Hy, — NL Proj ;. Z Pn(®)dn(y)
nj\fol

Projector Hj — N Projy: Z On()pn(y)
n=1

m Relations
lR¢{pn}=pZ=¢n lRp{én}:pn, nzl,...,No
- Rquf){f} = fforall f e M, [ ] R¢Rp{f*} = f*forall f* e Nﬁ

m PI“OJNL — (PTOJNI:)* | ] PI"OjN'ﬁ = (PI‘OjNL)*

34




2.7.2 Conditional positive-definiteness

Classical definition
Let NV = span{p, i}’gl be a finite-dimensional subspace of Ci, o (R?). Then, the
kernel function h : R? x R? — R is said to \/-conditionally positive-definite if

N N
Z Z Zmh (T, Ty )2 > 0

m=1n=1

d

forany N e N, x1,...,xy € R* and zq,..., 2y € R, subject to the condition

N
Z Zmpn(mm) =0
m=1

forn =1,..., Ny. The conditional positive-definiteness is said to be strict if

N N
Z Z Zmh (T, Ty )20, > 0,

m=1n=1

under the same conditions with (z1, . .., zx) € R¥\{0} and the z,, all being distinct.

<  p-conditional positivity where p = (p1, ..., pn,) represents a basis of N/

(Conditionally) positive-definite operator

Definition
Let A be a continuous operator S(R?) — S’(R¢) and N some finite-dimensional
subspace of S’(R%) spanned by p = (p1, ..., pn,)- The operator A is said to be:

e Symmetric or self-adjoint if, for all 1, p» € S(R?),
(Ap1, p2) = (Apa, p1).
e Positive-definite if, for any ¢ € S(R?),
(Ap, ) = 0.
e N -conditionally positive-definite (or p-conditionally positive), if

(Ap,p) =0
forany ¢ € Sp(R?) = S(RY) NNL = {p € S(RY) : p(p) = 0}

e Strictly \-conditionally positive-definite if, for all p € S,(R%)\{0},

(Ap, @) > 0.




Positive-definiteness: equivalences

Theorem
A:prs / a(-,y)p(y)dy with a(zg, ) = a(-,xo) € Ch o(R?) for any zo € R?
R4

(p-conditional) positive definiteness of A : S(R?) — S’ (R%)

)

(p-conditional) positive-definiteness of continuous kernel a : R? x R? — R.

Sketch of proof.

Direct part
N

Sequence of test functions ¢, = Z Znug (- —xy) € S(Rd) such that
n=1

N
: o _ — ke zlkel?
kli)r{.lo<f’ (Pk:( wn» nz::lznf(mm) Uk = k%™ 2 m) 1)

Indirect part
Making the link with Riemann integrals; i.e.,

(i%,...,i%)

. 1 | o
(f, @) =lim; o0 i Z f(@m) p(€m), Withz, =2 R

37

2.7.3 Spline-admissible operator

Definition

A linear operator L : Hy, — Lo(RY) is called spline-admissible if there exists
a symmetric kernel G -1, : R? x R? — R, a finite-dimensional subspace A, =
span{pn}ijgl and an order a € R of algebraic growth such that :

1. G+, is a Green’s function of (L*L) with the property that

L{GL-L(y) ) = G- (z,y) = GL(y, ©)

L'L{GL-L(-y)} =LHGL-(y)} = 0(- — y)
2. Null-space property: L{q} = 0 forallg € N1, C HL.
3. G+, is strictly NV -conditionally positive-definite.

4. Continuity and polynomial growth:
GL*L(‘, yO) € Cb,a (Rd) for any y, - Rd and NL - Cb,a (Rd).

5. Boundedness on the diagonal: sup,,cpa |GL-L(z, )| (1 + ||z])** < co.

38




Green’s function

Definition
The kernel G, : R? x R? — R is a Green’s function of L if L{GL(-,y)} = (- — y).

& LL Y} = pforany p € S(RY) where L= : p — /Rd GL(-,y)e(y)dy

m Preferred scenario: L is LSI with requency response E(w)

Gu(z,y) =pL(x—y) with pp(z)=F"" {E(l ) } (z) = canonical Green’s function
w
m Example of admissible operator: D™ = = & (u)m

m—1
xX

m Green’s function (causal): p,, (z) = =y

m—1

1 1. x
b ) = (o) 2

(jw)™
= Null space = polynomials of degree m — 1: Npm = span{%}ﬁgl

m Green’s function (canonical): ppm (z) = F {

(1) [ — g
2 (2m—1)!

Npw-conditionally-positive kernel:  G(z,y) =

39

2.7.4 RKHS associated with admissible operator

m “Orthogonal” complement of Ny, in Hy,

Hip = {f € Hi: ¢(f) =0},

Theorem 3

Let L be an admissible operator and (¢, p) a corresponding biorthogonal system
for M. Then, Hy, 4 is a Hilbert space equipped with the inner product (f, g)1, =
(L{f},L{g}). Moreover, there exists an isometric map L;l : La(RY) — Hy, 4 such
that

'HL’¢, = {f = L;lw Tw E Lg(Rd)}.

The operator L;l (see next slide) is uniquely specified through the following proper-
ties

1. Right-inverse property: LL;lw = wforallw € Ly(RY)

2. Boundary conditions:  ¢(L_'w) = 0 forall w € Ly(RY).
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Construction of stable right-inverse

m Ingredients for construction of L;l : Lo(RY) = Hy p C Ch oo (RY)
m Basis for Ni.: p = (p1,.--,DnN,)
m Biorthogonal analysis functionals: ¢ = (¢1, ..., ONy)

= Green’s function G, : R x R? - R of L & L{GL(hy)}=6(—1v)
n QTI(y> = <¢TL7GL(7y)> = G*{¢n}(y)a n=1,..., NO

L?!@H/ 9o (- y)p
Rd

9o(z,y) = GL(z,y) an

Hig € Chap(RY) & sup (14 [12[)* lgg (. -)llzoe) < o0
ze
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2.7.5 Determination of reproducing kernel

Generalized impulse response of Ay = L 'L

Theorem 4
The reproducing kernel of the Hilbert space Hr, ¢ specified in Theorem 3 is

atﬁ(w?y) = /]Rd g¢(waz)g¢(y7z)dz

where gg(z,y) = L' {6(- — y)}(z). Moreover, if G- (z,y) is the symmetric
Green’s function of L*L, then the reproducing kernel can be expressed as

ag(@,y) = Grr(z,y) an (¥) = D on(@pn(®) + Y Y rmndm(®)pn(y

m=1n=1

with
0u(®) = (0 Guor (o)) = [ 6u(2)Guo (. 0)d2

o = 609 00 Gros) = [ [ 60@)0, ()G . 9)dady.

)
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Reproducing kernel and Riesz map

N() NO NO
a¢(:c,y) GL- L T y an Uﬂ - Z ’Un<m)pn(y) + Z Z T'm,npm<w)p
n=1

m=1n=1
m Riesz map Hj , — Hi g
A¢— 1L Lx gor—>/ ag(-,Y)p

m Link with unregularized inverse A : ¢ — Gr(z, y)e(y)dy
Rd

m U, (Y) = (dn, GLL(Y)) = A{on}(y) = A{on}(y)
B Tmn = <¢m & ¢naGL*L> = <A{¢m}>¢n>

(L*L)A{p} = (L*L)Ays{p} = ¢ forall p € S(R?)

but A (unlike A,) does not admit a stable extension H; — Hr,

(v)
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Characterization of dual space

Proposition
Let L. be an admissible operator and (¢, p) a corresponding biorthogonal system for
Ni.. Then, the continuous dual of the RKHS #y, ¢ is the Hilbert space

Hi o ={f"=L*w:we Ly(RY)}
equipped with the inner product
(9o = (L f, L 0) ey = (AS", g7)

where the operators L;l and A are as previously defined. The operator (L*L) is
the Riesz map Hy, o — Hp, 4 so thatany f* = L*L{f} € #H}, , can be viewed
as the Riesz conjugate of some corresponding f € Hp, 4. Finally, we have the
“orthogonality” property

p(f)=0 <« pLL{f})=0

forany f* € Hy , and/or f € Hy 4.
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Rieszmap: Ay = L;ngl*
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—11 —1%

Properties of positive operator Ay =1L, L,

Proposition
The operator Ay : ¢ — [5q ag (-, y)(y)dy, where ag (-, y) is given in Theorem
3, has the following properties:

1.

2.

3.

Itis the Riesz map Hy, , — Hr,p = {f € Hr : ¢(f) =0}
It is bounded H| — Hi, = Hr, ¢ D NL.
It has a finite-dimensional null space span{¢, }2°, = M.

It imposes the boundary conditions: ¢(Ax{f*}) = 0 forall f* € Hj. In
other words, Ay continuously maps Hy, — Hi,,-

Relation with unregularized operator A : ¢ — [o, Gr-L(-, ¥)¢(y)dy
No

Vit eHLg:  Aelf Y= AL =Y (Algn) /)pn
n=1

Vo=p €N : Ap{p} =0 and A{p}eHy
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RHKS structure of native space .

Theorem 5
Any f € Hi, = Hi,e ® N1 has a unique representation as

f=Lglw+q

where w = Lf € Ly(R?%) and ¢ = Proj,, {f} = zfj;(f, ®n)pn € NL. Moreover,
‘H1, equipped with the inner product

Ny

(f,9)me = (LLLG) + D (Pns £){bns 9)
n=1
is a RKHS whose reproducing kernel is
Ny
ho(T,y) = ap(@,y) + > pu(@)pa(y).
n=1

Finally, if the operator A meets the admissibility conditions (strict conditional positivity
and a-boundedness) and the ¢,, are such that A{¢,} € C}, o(R?), then S(R?) C
Hi, C Ch.o(RY) C S'(RY) with the insurance that H, is dense in S’ (R4).
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Summary of operators

Description Operator Kernel
Right-inverse of L G GL(z,y) = L{Gr-L(-, @) }(y) ???
Right-inverse of (L*L) A = GG* GrL(z,y)
Stable inverse of L L;l GrL(z,y) — %pn(w)(}*{qbn}(y)
n=1
Rieszmap Hi , = Hrge Ag ag(x,y) reproducing kernel

Rieszmap Hyp — Hy 4  (L'L)

No
Riesz map H; — Hi Ay +Rp ag(x,y) + an(a:)pn(y) reproducing
n=1 kernel
Riesz map Hrp, — Hj, (L*L) + R

m Direct sum decomposition

nVp=p"€N{: Ag{o} =0 = VpENL:  (L*L){p} =0

sVfreHLy:  Rp{f7}=0 = VfeHLg: Re{f}=0 s




Summary of key relations

L;l* L HY o — Ly (R%)

Ly': La(RY) — Hi g CHy

® L, = (Id - Projy; )" G = (Id - Projy;, )G m Ly = G*(Id - Proj;)

Vw € Ly(RY) : LWL {w} = w

Vw € Ly(RY) - LLgH{w} = w,
Vo € N Ly"*{¢} =0

Vw € Ly(RY) : ¢(Ly'w) =0

Rieszmap Ay :Hp s — Hi g C He

= Ay = (Id — Projy; ) (GG*) (1d — Projy; ) = Ly 'Ly ™
VoeN|:  Ap{d}=0
Vi et d(Ap{f*}) =0
vV €Hi g (L*L)Au{f*} = f*

Ny
Vi eH] 0 Ap{f =AY+ D (Ao}, f)pn

n=1
51

Native space: the bottom line

m The native space of L is a Hilbert space Hp, C Cb@(]Rd) equipped with the inner product

(o0 = (LE L)+ S (bms £) (6 0)

n=1

with ¢,, € H; where (¢, p) = ((¢n), (ps)) is a biothonormal system for 7, = span{p, }°; C Hx..

m Direct sum structure: Hp, = Hy g ® N = H, 5 ® N1 where Hi g = {f € Hi: ¢(f) = 0}
with the norms induced by the biorthogonal systems (¢, p) and (q?),i)) being equivalent.

m If there exists a symmetric V7 -conditionally-positive operator A : S(R?) — S’ (R?) such that
(L*L)A{p} = @ for all p € S(RY), then:
= H1, can be defined as the completion of S(R?) is the || - ||, -norm.

= Hy is dense in S’'(R?).
= Any function f € Cb@(]Rd) can be approximated as closely as desired by a kernel

expansion of the form

K Ny
frx = ZakGL*L('7wk) + Z bnpn
k=1 n=1

with a finite number (K + Ny) of terms and some (possibly adaptive) centers x, € R,
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3. VARIATIONAL SPLINES

m Generalized interpolation problem

Recover f € Hj, from the measurements y,,, = (v, f),(m =1,..., M)

Traditional setting: y,, = f(xm) = (6(- — zm), f)

m Variational (=minimum energy) solution

fo = arg min [LAIIZ, st (f(zm) = ym)ms

m Minimization of least-squares functional

Perturbed measurements model: y,, = (v, f) +€m (m=1,..., M)

M

Jes(F19,2) = 3 (Um — (v, £)* + AILFIZ,

m=1
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3.1 Regularization induced by an inner product
Optimization is performed over a Hilbert space ‘H

Effect of measurement functional v,,, € H': (v, f) = (), fn

M:

JLS f|y7 m)f ) +/\Hf||%-t:%a(f7f>_v<f>+00
m:l o
Linear functional: v(f) = 2 Z Ym Vs [
m=1
M
Bilinear form: a(f1, f2) = 2X{(f1, fo)u + 2 Z (Vs 1)1 Vs f2) 3
m=1

fo=argmingey J(fly,A) &  o(f)=alfo,f) (Condition of optimality)

=| fo € span{um M1

with guarantee of unicity (Hilbert’s projection theorem)
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Regularized least-squares fit: discretization

H: RKHS with reproducing kernel 4, : R¢ x RY — R

Solution space parametrized by a = (a1, ...,ay) € RM

M
f@) = Y enril@) vl = [ ruley @)y

System/Gram matrix:  [Gl,,n = (U, V) = (V). V) / / Um (X)) (T, y) vy (y)dedy
Rd JRd

= Jus(fly,\) = J(aly, ) = |y — Gal|3 + \a” Ga

oJ(aly, \)

Condition for optimality: 9a

=2G(y — (G + Ay )a) =0

+ unicity

= y=(G+AMyla & a=(G+Auy)"!
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Generalization: Abstract representer theorem

= H: Hilbert space with inner product (-, )% and Rieszmap R : H' — H

sv:f=v(f)= (v, f),...,{va, f)) is a continuous linear operator Hy, — RM that
extracts M measurements from the signal f;

= C: closed convex subset of RM such that its preimage in H is nonempty.

Theorem
The solution of the general convex optimization problem

. 2
s.t. eC
arg 10in [FalE v(f)

is unique and of the form

M

*

fO - § AmVp,
m=1

with v, = R{v,,} € H and suitable linear weights a = (a,,) € RM.

Special case: C1s = {z € RY : ||z — y||3 < 02}
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Proof (step by step)

m Unicity of the solution (by Hilbert’s projection theorem)
C convex & closed, v linear & continuous = U = v~1(C) convex & closed

m Riesz’ representation theorem: (v, f) = (v, f)n with v}, = R{v.,} € H
= Identification of reconstruction space: V = span{v;,}M_, CH

= Optimization space: H =V & V-

= f=u+utwithueVandu- € V*+

m Nullspaceof v: V' ={fecH: {fivn)={fiv ) )nu=0 m=1,...,M}

= fo =up +ug with v(fo) = v(ug) and v(ug) =0

m fj is the minimal-norm solution

1follZ, = lluo + ug 13, < luoll3, & ug =0 < JoeV QED
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Smoothing splines and/or ridge regression
H: RKHS with reproducing kernel 3, : R x R - R

“Ideal” sampling functionals: v, = (- — x,,), (m=1,...,M)

M
fLS = arg}nin (Z (ym - f(mm))Q + AHf”?—L)

EH
m=1

Solution space parametrized by a = (a1, ...,ay;) € RM
M
f@) =" amry(z, zm) <«— kernel estimator
m=1

m Regularized least-squares fit

autocorrelation ridge

matrix \ /

= arsg = (R+ )\IM)_ly

Statistical linear regression: \ o o

with [R]m,n = (ru (s @m), 1 (5 Tn)) . = 71 (Tm, )
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Application to machine learning

m The “machine learning” problem
= Find a function f : RY — R such that f(x,,) ~ vy, (with a training set of size M)

= Proximity between z(f) = (f(x1),..., f(zwm)) and y = (y1,...,yn) is measured
by some loss function F : RM x RM — R

Definition
A multivariate function g : RM — R is convex if

g(Tzl +(1—7)zg) < Tg(zl) +(1-— T)g(ZQ,y)

forall zy,z, € RM and all 7 € [0, 1]. It is strictly convex if the order relation
holds with a strict inequality for z; # z» and 7 € (0, 1).

A multivariate function ¢ : RM — R is said to be coercive if lim)| |00 9(z) = 00.

The loss function F : RM x RM — R is said to be convex (resp., coercive)
if F(-,y) : RM — R is convex (resp., coercive) for any fixed y € R?
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Examples of loss functions
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Representer theorem for machine learning

s H C Ch o(RY): RKHS with inner product (-, -)3, and reproducing kernel 3, : R x R? — R
= Sampling operator f — z(f) = (f(x1),..., f(zam)) with@y, ..., xy € R

= Corresponding data values y = (y1,...,ym) € RM

Theorem
The solution of the generic minimization problem

in (F : NFEDE
arg min (F(2(f),y) + M £13)
where the cost function F'is strictly convex, is unique and of the form

M
f@) =) anru(@, om)

with suitable linear weights a = (a,,) € RM.

Theoretical justification for kernel methods

(Schoenberg 1964, Kimeldorf-Wahba 1971) (Scholkopf-Smola 2001)
F(z(f),y) = |l2(f) — yl3
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Proof
= [+ z(f): linear and continuous on H
= [+ F(z(f),y): strictly convex and continuous on H

s f — A||f]|3,: strictly convex, continuous and trivially coercive on H

Theorem (Classical existence result from convex analysis)

Let X be a reflexive Banach space and J : X — R a convex, (lower semi-)
continuous, and coercive functional on X. Then, the problem

S = arg xlg/fv J(x)

admits at least one solution. Moreover, the solution set .S is a convex subset of
X which reduces to a single point (unique solution) when J is strictly convex.

= Unique solution f; with “optimal” data term F(y,,y) where yo = z(fo) € RM

Since fj achieves the minimum, it is also the solution of the interpolation problem

fo=mingeq || fI15, st 2(f) =vo

= fo € span{ry (-, xm) M

m=1
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3.2 Non-coercive regularization functionals

m Functional context
= Non-trivial null space N1, = {f € Hy, : L{f} = 0}
= Biorthogonal system (¢, p) for N, = span{p, }°, with ¢,, € H}

= Native space Hy, C C’bﬂ(Rd) is the Hilbert space equipped with the composite norm

£l = JILFI, + 6O

m Variational formulation of linear inverse problems

arg frgglL (F(V(f),y) + AHLfH%Q(Rd))

= Motivation: favors (“smooth”) solution with large null-space component

= Theoretical challenge: ||Lf||7, is only a semi-norm !
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Proper regularization operator

Definition

The operator L : Hy, — Lo (R?) with null space N, = span{;zan}iﬁ1 C Hy
is a proper regularization operator for the measurement operator v : f —
v(f)= (1, f),.--,(vam, f)) if the following technical conditions are met:

1. L is spline-admissible
2. vy,...,vm € H,

3. Forallg € N, ||v(q)||2 > 0 with equality if and only if ¢ = 0.

& >0 st g}, = el < Llv(a)l.

m Criterion

The singular values of P = [v(p1) --- v(pn,)] are strictly positive and bounded
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Representer theorem for linear inverse problems

s v:fv(f)= v, f),..., (va, f)) is a continuous linear operator Hy, — R
that extracts M measurements from the signal f;

L : Hy, — Lo(R?) is a proper regularization operator;

{pn ,{Ygl is a basis of the null space of the regularization operator;

= F:RM x RM 5 Ris a strictly convex and coercive loss function;

y € RM is a given data vector and A\ € R an adjustable regularization parameter.

Theorem
The solution of the general minimization problem

o 2
g i Fw(f),y) + AILf7, @a

is unique and has the generic linear parametric form

M No
f()\) = Z AmPm + Z bnpn
m=1 n=1

with o = A{vm} = / Gren(, 9)vm()dy, a = (am) € RM, b= (b,) € RN,
Rd

subject to the “orthogonality” constraint: (a,v(p,)) =0forn =1,..., Ny.
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Proof
Minimization of J(f|y,\) = F(v(f),y) + >\|\LfHQL2(Rd)

Hy=HreDHL & f:L;1w+q with w:Lf,q:ProjNL{f}

m Step 1: Establish existence and unicity

= Continuity of .J: directly follows from continuity of f — ||Lf||7_, v, and F(-,y).

= Strict-convexity of .J: follows from strict convexity of .J and F'(-,y), and linearity of v.

= Coercivity of J: |[Lf||7, — oo as [Jw]|L, — oo,

while F(V(L;lw) +v(q),y) = oo as ||¢(q)]]2 — o0

Key relations: || f[13,, = [[wll7, + ()3 and clld(q)ll2 < [[v(q)]l2

67

Proof (Cont.)

m Step 2: Generic form of solution

Minimizer: f; such that v(fo) = y, € R™ and ¢(fo) = co = (c1,- .., cn,) € RN

Direct sum decomposition in Hy, = Hy, . & Hi
fo=fo+raq with fo=fo—q €Hrgp qo= Proj. {fo} € N
subjectto ¢(fo) =0 = ¢(qo) =co, and v(fo) =yo— v(q)

No
= =Y copn and fo—arg min [|fl%, , st v(F)=yo - v(a)
n=1 feHL*‘b ’
M No
= fo=Y_ amAg{vm}+ Y capn (by Abstract representer theorem)
m=1 n=1
i ) M
m Orthogonality property:  fi = (L*L){fo} = Z AmVm € Hi,(p 1 M,
m=1

M Ny M Ny
o :A¢{z amum} £ e :A{z amym} £3 b
m=1 n=1 m=1 n=1

(using relation between A4 and A for f* € Hj 4)
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3.3 Discretization and numerical solution

m Finite-dimensional solution space
Vi, ={f=¢Ta+p’b:acRM bec RN} CH,

where ¢ = (¢1,...,¢om) With p,, = A{v,} and p=(p1,...,Pn,)

= J(fly,\) = J(a,bly,\) = F(Ga+ Pb,y) + \a”Ga

m Exact discretization

System/Gram matrix G € RM*M: (G, = (U, on) = Wim, A{vn}) = (0, 0n)n

= /Rd /]Rd U ()G (2, y) vy (y)dedy

Additional system matrix P € RM*No:  [P],, . = (v, pn) = / V() pp(z)de
Rd
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Discrete optimization problem

i F(Ga+Pb,y)+XaTG
8 o P, 1FIGREPPY) £ A0 Ce)

m Steepest descent algorithm
Initialization:  (ag, by)

N ai=a;—71G (VF(Gak + Pby,y) + 2)\ak)
</ bii1 = by — 7TPT VF(Gay + Pby,y)

Until stop criterion
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Least-squares approximation problem

J(a,bly,\) = |Ga+Pb -y + Xa’Ga

dJ(a,bly, )

- :2G<(G+)\I)a+Pb—y>:0

dJ(a,bly, \)

_opT ) —
5h =2P" (Ga+Pb-y)=0

()T ()

m Extreme case: A — >

A(o) = 0 and b(oo) = (PTP)_lPTy = arg IIlbiIl HPb - y”%
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