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Linear operators, adjoints and kernels
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hf,G'i = hG⇤f,'i

, the kernel of the operator is symmetric

Self-adjoint operator

Pair of vector spaces X ,Y with topological duals X 0,Y 0

S(Rd) ✓ X ,Y,X 0,Y 0 ✓ S 0(Rd)

The operator H is said to be self-adjoint if H{'} = H⇤{'} for all ' 2 S(Rd)

“Integral” representation: g 2 S 0(Rd ⇥ Rd) = Schwartz kernel of G

G : ' 7!
Z

Rd

g(·,y)'(y)dy G⇤ : ' 7!
Z

Rd

g(y, ·)'(y)dy

Linear operator G : X ! Y and its adjoint G⇤ : Y 0 ! X 0



Positive-definite kernel
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Definition

A symmetric kernel function h : Rd ⇥ Rd ! R is said to be positive semi-

definite (or positive definite, for short) if

NX

m=1

NX

n=1

zmh(xm,xn)zn � 0

for any N 2 N, x1, . . . ,xN 2 Rd
, and z1, . . . , zN 2 R.

, The eigenvalues of H are non-negative

The operator H : ' 7!
Z

Rd

h(·,y)'(y)dy is positive-definite; i.e.,

hH{'},'i � 0 for all ' 2 S(Rd)

Equivalent conditions

The square matrix H 2 RN⇥N
with entries [H]m,n = h(xm,xn) is

positive definite for any choice of x1, . . . ,xN 2 Rd
; i.e.,

zTHz = hHz, zi � 0 for all z 2 RN

Aronszajn’s theorem
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Theorem (Moore-Aronszajn)

The kernel function h : Rd ⇥ Rd ! R is symmetric positive (semi-)definite

if and only if there exists some Hilbert space H and a families of elements

{f
x

}
x2Rd in H such that

h(x,y) = hf
x

, f
y

iH. (1)

In particular, there is a unique Hilbert space Hrep—the reproducing kernel

Hilbert space of h—such that (1) holds with f
x

= h(·,x).

NX

m=1

NX

n=1

zmh(xm,xn)zn =
NX

m=1

NX

n=1

zmhf
xm , f

xniHzn

= h
nX

i=1

zmf
xm ,

nX

j=1

znfxniH (bilinearity of h·, ·i)

= k
nX

i=1

zmf
xmk2H � 0

Sketch of proof (direct part):
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2. RKHS
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Definition

The Hilbert space H ✓ S 0(Rd) is said to be a reproducing kernel Hilbert
space (RKHS) if the shifted Dirac impulse �(·� r0) 2 H0 for any r0 2 Rd.

In essence, any Hilbert space H = {f : Rd ! R : kfkH =
phf, fiH < 1} ✓

S 0(Rd) whose members f are “ordinary”—but, not necessarily bounded—functions

on Rd is a RKHS.



2.1 Definition of reproducing kernel
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Definition

The reproducing kernel of a RKHS on Rd is the function h : Rd ⇥ Rd ! R
such that

(i) h(x0, ·) 2 H for all x0 2 Rd

(ii) f(x0) = hh(x0, ·), fiH for all f 2 H and x0 2 Rd.

�
x0 = �(·� x0) 2 H0 ) existence of �⇤

x0
= R{�

x0} 2 H such that

f(x0) = �
x0(f) = h�(·� x0), fi = h�⇤

x0
, fiH,

for all f 2 H and any x0 2 Rd

Reproducing kernel: fundamental properties
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Proposition: Let H be a RKHS on Rd. Then, its reproducing kernel h :

Rd ⇥ Rd ! R has the following properties.

1. It is unique.

2. h(x,y) = hh(x, ·), h(·,y)iH
3. Symmetry: h(x,y) = h(y,x) for all x,y 2 Rd

4. Positive definiteness.

5. The linear span of {h(x, ·),x 2 Rd} is dense in H.

6. Link with the Riesz map: The operator R : ' 7! R{'} =
R
Rd h(·,y)'(y)dy

is a unitary mapping H0 ! H with the property that hu,Rui = kuk2H0

for all u 2 H0 (the dual space of H).

7. Invertibility: The operator R admits a unique inverse R�1 : H ! H0

with the property that hR�1f, fi = kfk2H for all f 2 H.
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Elements for the proof:

Unicity: h is the kernel of the Riesz map H0 ! H
f(x0) = h�(·� x0), fi = hR{�(·� x0)}, fiH = hh(·,x0), fiH

, h(·,x0) = R{�(·� x0)}

Symmetry: h(x,y) = hh(x, ·), h(y, ·)iH = hh(y, ·), h(x, ·)iH = h(y,x)

Positive definiteness: link with inner product

Denseness in H: Consider any g 2 H that is orthogonal to the linear

span of {h(x, ·)}
x2Rd . Then, hg, h(x, ·)i = 0 for every x 2 Rd

, which,

by the reproducing kernel property, is equivalent to g = 0.

Link with Riesz map and invertibility follow from Riesz’ theorem

hv, ui = hv⇤, uiH = hRv, uiH = hv,R�1uiH0 = hv, u⇤iH
for all v 2 H0

and u 2 H

2.2 Decay and continuity properties
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kfk1,↵ = ess sup
x2Rd

(|f(x)|(1 + kxk)↵)

L1,↵(Rd) =
�
f 2 S 0(Rd) : kfk1,↵ < +1

 

= sup
x2Rd

(|f(x)|(1 + kxk)↵) (if f is continuous)

Cb,↵(Rd) =
�
f : Rd ! R continuous and s.t. kfk1,↵ < +1

 
.

Both are Banach spaces with

S(Rd) ✓ Cb,↵+�(Rd) ✓ Cb,↵(Rd) ✓ L1,↵(Rd) ✓ S 0(Rd),

for any � � 0

Control of the rate of algebraic decay/growth: ↵ 2 R



Continuity and decay (Cont’d)
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Continuous functions of slow growth

For any continuous function f 2 S 0(Rd), there exists some (critical) expo-

nent ↵0 2 R such that f 2 Cb,↵(Rd) for all ↵  ↵0

, |f(x)|  kfk1,↵0

(1 + kxk)↵0

kh(·, ·)k1,↵ = sup
x,y2Rd

|h(x,y)|(1 + kxk)↵(1 + kyk)↵

Kernel spaces

Cb,↵(Rd ⇥ Rd) ✓ L1,↵(Rd ⇥ Rd) ✓ S 0(Rd ⇥ Rd)

Cb,↵(Rd⇥Rd) =
n

h : Rd⇥Rd ! R (jointly) continuous and s.t. kh(·, ·)k1,↵ < +1
o

RKHS of continuous functions
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H ✓ Cb,↵(Rd) ) kfk1,↵  CkfkH, for all f 2 H
+

(continuous embedding)

|f(x0)| = |hf, �(·� x0)i|  (1 + kx0k)�↵kfk1,↵  C
x0kfkH

+
�(·� x0) 2 H0 (RKHS property)�(·� x0) : f 7! f(x0)

Theorem 1: A bivariate function h : Rd ⇥ Rd ! R is the reproducing kernel of a

RKHS H ✓ Cb,↵(Rd) with ↵ 2 R if and only if it is positive-definite, separately

continuous in each variable, and such that h(·, ·) 2 L1,↵(Rd⇥Rd). In particular,

this implies that

1. h(x0, ·) 2 Cb,↵(Rd) for any x0 2 Rd

2. kh(·, ·)k1,↵ = sup
x,y2Rd |h(x,y)| (1 + kxk)↵(1 + kyk)↵ < 1

3. A↵,h = sup
x2Rd h(x,x) (1 + kxk)2↵ < 1

with Conditions 2. and 3. being equivalent.



Equivalence of Conditions 2. and 3.
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+

kh(·, ·)k21,↵ = sup
x,y2Rd

|(1 + kxk)↵h(x,y)(1 + kyk)↵|2

 sup
x,y2Rd

(1 + kxk)2↵h(x,x)(1 + kyk)2↵h(y,y) = A2
h,↵

Conversely,

(1 + kxk)↵h(x,y)(1 + kyk)↵  kh(·, ·)k1,↵

so that

A↵,h = sup
x2Rd

(1 + kxk)↵h(x,x)(1 + kxk)↵  kh(·, ·)k1,↵,

from which we deduce that A↵,h = kh(·, ·)k1,↵.

PD-kernel equivalent of Cauchy-Schwarz Inequality: |h(x,y)|2  h(x,x)h(y,y)

Key property: h(x,y) = hh(x, ·), h(·,y)iH

Simplified version of theorem:
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h 2 Cb,↵(Rd ⇥ Rd) ) H ✓ Cb,↵(Rd)

|f(x)� f(x0)|2 = |hh(x, ·)� h(x0, ·), fiH|2

 kh(x, ·)� h(x0, ·)k2H kfk2H (Cauchy-Schwarz)

=
�
h(x,x) + h(x0,x0)� 2h(x,x0)

�
kfk2H.

h 2 Cb,↵(Rd ⇥ Rd) ) lim
x!x0 h(x,x) + h(x0,x0)� 2h(x,x0) = 0

) lim
x!x0 |f(x)� f(x0)|2 = 0

|f(x)| = |hh(x, ·), fiH|

 kh(x, ·)kH kfkH =
p

h(x,x) kfkH (Cauchy-Schwarz)

kfk21,↵ = sup
x2Rd

|f(x)|2 (1 + kxk)2↵  sup
x2Rd

(1 + kxk)2↵h(x,x) kfk2H = Ah,↵ kfk2H < 1

Boundedness: H ✓ L1,↵(Rd)

Continuity: H ✓ Cb,↵(Rd) ✓ L1,↵(Rd)



Turning                into a RKHS

17

L2(Rd)

NOT

�(·� x0) /2
�
L2(Rd)

�0
= L2(Rd)

f(x0) is not well defined pointwise for all f 2 L2(Rd)

L2(Rd) is a reproducing kernel Hilbert space

Candidate reproducing kernel �(·� x0) : ' 7! h�(·� x0),'i = '(x0)

?

Proposition

Let g : Rd⇥Rd ! R be a kernel such that g(x, ·) 2 L2(Rd) for any fixed x 2 Rd
.

Then, the output of the linear operator G : w 7! f =
R
Rd g(·,y)w(y)dy is well

defined pointwise for any w 2 L2(Rd). If, in addition, there is some ↵ 2 R such

that

sup
x2Rd

(1 + kxk)↵kg(x, ·)kL2(Rd) < 1,

then G is bounded from L2(Rd) ! L1,↵(Rd).

Solution = Smoothing

“Smoothing” operator G : L2(Rd) ! H ✓ Cb,↵(Rd)

2.4 RKHS associated with invertible operator
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Native space

HL =
�
f : Rd ! R s.t. kfkHL

M
= kLfkL2(Rd) < 1 ✓ L2(Rd)

coercivity continuity ⇔ specifies a valid norm

Riesz maps

R�1 = L⇤L : HL ! H0
L

R = G⇤G = (L⇤L)�1 : H0
L ! HL

, Existence of (stable) inverse operator: G = L�1 : L2(Rd) ! HL

Inner product: hf, giHL = hLf,Lgi = h(L⇤L)f| {z }
f⇤2H0

L

, gi

Coercive regularisation operator: L : HL ! L2(Rd)

ckfkL2(Rd)  kLfkL2(Rd) = kfkHL



Reminder: Dual of a Hilbert space
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The dual of a Hilbert space H is a Hilbert space H0 with H0 = R�1(H).

HH0

u

v⇤ = R{v}v hu, v⇤iH = hu, vi = hR�1u, viH0

R�1{u} Riesz isomorphism
�(·� x0) h(x0, ·)

R�1

R
RKHS

Determination of reproducing kernel
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h(x,y) = R{�(·� y)}(x) with R = (L⇤L)�1 : H0
L ! HL

Hypothesis: h(x, ·) 2 Cb,0(Rd) (continuous and bounded) for any (fixed) x 2 Rd

) HL ✓ Cb(Rd) is a RKHS

Explicit determination for LSI (=convolution) operator

L̂(!) = F
�
L�
 
(!): frequency response of operator

h(x,y) = ⇢L⇤L(x� y) where ⇢L⇤L(x) = F�1

(
1

|bL(!)|2

)
(x)

(by Theorem 1)

kLfk2L2
=

Z

Rd

��L̂(!)f̂(!)
��2 d!

(2⇡)d
� c2

Z

Rd

��f̂(!)
��2 d!

(2⇡)d
= c2kfk2L2

Necessary (and sufficient) condition for coercivity: c = ess inf
!2Rd

|L̂(!)| > 0



2.5 Factorization of reproducing kernel 
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Motivation: Extension for non-coercive regularization operator

Riesz map: R = GG⇤ : H0 ! H
Inverse operator: G = L�1

with Schwartz kernel g(x,y) = G{�(·� y)}(x)

Theorem 2

Let H ✓ Cb,↵(Rd) be a RKHS equipped with the inner product hf, giH = hLf,Lgi.
Then, there exits a unique continuous operator L�1 : L2(Rd) ! L1,↵(Rd) and a

Hilbert space H0 ✓ L2(Rd) such that the Riesz map from H0 ! H factors though

H0 as R = L�1L�1⇤ : H0 ! H0 ! H.

The Schwartz kernel of L�1 denoted by g(·, ·) satisfies the estimate

sup
x2Rd

(1 + kxk)↵kg(x, ·)kL2(Rd) =
p

A↵,h < 1

and is linked to the reproducing kernel h(·, ·) of H by

h(x,y) =

Z

Rd

g(x, z)g(y, z)dz

g(y,x) = L{h(·,y)}(x).

H0 ! H0 ! H with H0 ✓ L2(Rd)

Example 1: RKHS associated with an ortho-basis
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Generic form of reproducing kernel

hV(x,y) =
X

n2N
�n(x)�n(y)

Orthonormal system: {�n}n2N with �n 2 Cb(Rd) \ L2(Rd)

Inner product: hf, giV =
X

n2N
h�n, fih�n, gi

V = span{�n}n2Z equipped with h·, ·iV is a Hilbert space

V = V 0 with V ✓ L2(Rd)

Simplified setting

Orthogonal projector ProjV : L2(Rd
) ! V

ProjV{f}(x) = hf, hV(x, ·)i =
X

n2N
�n(x)hf,�ni

Factorization (trivial): ProjV � ProjV = ProjV

hV(x,y) = hhV(x, ·), hV(·,y)i



Example 2: RKHS of bandlimitted functions
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sinc(x) =
sin(⇡x)

(⇡x)
= F�1{ [�⇡,⇡]}(x)

Reproducing kernel

hsinc(x, y) = sinc(x� y) =
X

k2Z
sinc(x� k)sinc(y � k)

Regularization operator

Lsinc : ' 7! sinc ⇤ '

Subspace of bandlimited functions in L
2

(R) with Nyquist frequency !
max

= ⇡

H
sinc

=
�
f 2 S 0(R) : (sinc ⇤ f) 2 L

2

(R)
 

Reproduction formula = Shannon’s Sampling theorem

8f 2 Hsinc : f(x) = (sinc ⇤ f)(x) =
X

k2Z
hf, sinc(·� k)i sinc(x� k)

=
X

k2Z
f(k) sinc(x� k)

Example 3: Subspace of polynomials
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N = span{p1} ✓ Cb(R) with p1(x) = 1

Biorthogonal system: (�, p1) with h�, p1i = 1

Inner product: hf, giN = f(0)g(0) = h�, fih�, gi

N = span{p1} equipped with hf, giN is a RKHS

Projection operator: ProjN {f} = h�, fip1

Reproducing kernel

hN (x, y) = p1(x)p1(y) = 1

but, there is no factorization ... ?!?

(�1, p1) with h�1, p1i = 1

Alternative solution(s)

ProjN {f} = h�1, fip1

hf, giN = h�1, fih�1, gi



2.6 RKHS associated with derivative operator
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Related operators

Adjoint: D⇤ = �D

D⇤D = �D2

Green’s function of D⇤D:

⇢D⇤D(x) = F
⇢

1

!

2

�
(x) = � 1

2 |x| 2 Cb,�1(R)

hDf,'i = f(x)'(x)|+1
�1| {z }

=0

�
Z

R
f(x)'0(x)dx = hf,�D'i

L = D =
d

dx
Key characteristics

Green’s function(s) ⇢D such that D{⇢D} = �

- Causal solution: +(x)

- Canonical solution:

1
2 sign(x) = F

n

1
j!

o

(x) = +(x)� 1
2

Null space of dimension N0 = 1:

ND = {q 2 S 0(R) : D{q} = 0} = span{p1} with p1(x) = 1

Derivative operator (Cont’d)
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Native space

HD = {f : R ! R s.t. Df 2 L2(R)}

(first-order of growth)

✓ Cb,�1(Rd)

Proposition

HD equipped with the inner product hf, giHD = hDf,Dgi + f(0)g(0) is a RKHS

whose reproducing kernel is

hD(x, y) =
1
2

�|x|+ |y|� |x� y|�+ 1.

hD(·, y) 2 Cb,�1(R) for any y 2 R



Proof by verification
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1) HD is a Hilbert space

hDf,Dgi is a semi-inner product

hDf,Dfi = 0 , f = b1p1 2 ND with b1 2 R

kfk2HD
= hDf,Dfi+ |f(0)|2 = 0 , f 2 ND and f(0) = 0 , f = 0 (unicity)

= [0,y)(x) 2 L2(R) ) hD(·, y) 2 HD

2) Check reproducing kernel property of hD(x, y) =
1
2

�|x|+ |y|� |x� y|�+ 1

D{hD(·, y)}(x) = 1
2

�
sign(x)� sign(x� y)

�

D⇤D{hD(·, y)}(x) = �D{ 1
2

�
sign(·)� sign(·� y)

�}(x) = ��(x) + �(x� y)

hD(0, y) =
1
2 (|0|+ |y|� |0� y|) + 1 = 1

Hence, for all f 2 HD,

hf, hD(·, y)iHD = hDf,D{hD(·, y)}i+ f(0)⇥ 1

= hf,D⇤D{hD(·, y)}i+ f(0)

=
�� f(0) + f(y)

�
+ f(0) = f(y).

Native space for derivative operator
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HD: RKHS equipped with the inner product hf, giHD = hDf,Dgi+ f(0)g(0).

) HD = HD,� �NL

Direct sum structure

Every function f 2 HD has a unique decomposition as f = f1 + f2

f1 = (Id� ProjND
){f} = f � f(0)p1 2 HD,�

f2 = ProjND
{f} = h�, fip1 = f(0)p1 2 ND

“Quotient” space HD

�NL: HD,� = {f 2 HD : h�, fi = f(0) = 0}
) RKHS with inner product hDf,Dgi
Null space ND = {f 2 HD : D{f} = 0} = span{p1}
) RKHS of dim N0 = 1 with inner product hf, giNL = f(0)g(0)



2.7 Operators with non-trivial null spaces
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Specification of native space: first attempt

H
L,ext = {f 2 S 0(Rd) : kLfk2L2(Rd

)

< 1}

“Extended” null space: N
L,ext = {q 2 H

L,ext : L{q} = 0}.

Solution: Restriction of null space to N
L

= span{pn}N0
n=1

✓ N
L,ext

Fixed quotient space: HQ = H
L,ext

�N
L,ext = H

L

�N
L

Potential problem for d > 1 as N
L,ext may not be finite-dimensional !!!

L : HL ! L2(Rd)

Proposition
The native space of L, HL = HQ �NL, where NL is a finite-dimensional null space
of L endowed with the inner product h·, ·iNL , is a Hilbert space for the inner product

hf, giHL = hLf,LgiL2 + hProjNL
{f},ProjNL

{g}iNL

where ProjNL
is a projection operator from HL ! NL.

2.7.1 Hilbert-space structure of null space
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Motivation: Ls = w ) s = L�1w ?

Remove the null-space ambiguity by imposing N0 linear boundary conditions: �(s) = 0.

Definition

Let L : HL ! L2(Rd) be a spline-admissible differential operator with a null space

NL of dimension N0. The pair (L,�) is said to be admissible if there exist two

constants B � A > 0 such that

AkfkN  k�(f)k2  B (kLfkL2 + kfkN ) , 8f 2 HL.

Upper bound , �n 2 H0
L

Lower bound: �(q) = 0 , q = 0 8q 2 NL

Admissible operator L : HL ! L2(Rd)

Null space: NL = span{pn}N0
n=1 equipped with a norm k · kN : HL ! R+

Linear “boundary” functionals � : HL ! RN0

f 7! �(f) = (h�1, fi, . . . , h�N0 , fi)



Biorthogonal system
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Basis for NL: p = (p1, . . . , pN0)

Analysis functionals: � = (�1, . . . ,�N0)

Projector onto NL = span{pn}N0
n=1 ? N 0

L = span{�n}N0
n=1

ProjNL
: HL ! NL

f 7!
N0X

n=1

h�n, fipn

Biorthogonality relation

h�m, pni = �m,n , �(pn) = en , h�,pT i = IN0

RKHS associated with null space

32

Biorthogonal system: {(�n, pn)}N0
n=1

Proposition

Let (�,p) be a biorthogonal system for NL ✓ Cb,↵(Rd). Then, NL =

span{pn}N0
n=1 equipped with the inner product

hf, giNL =
N0X

n=1

h�n, fih�n, gi = hR�{f}, gi, f, g 2 NL

is a RKHS with reproducing kernel

Rp{�(·� y)}(x) =
N0X

n=1

pn(x)pn(y).

, 8f 2 NL : kfkNL = k�(f)k2



Dual of null space
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Biorthogonal system: {(�n, pn)}N0
n=1

R� : f 7!
N0X

n=1

�nh�n, fi

Reproducing kernel:

N0X

n=1

pn(x)pn(y)

Rp : f 7!
N0X

n=1

pnhpn, fi

Null
space

Dual
space Riesz maps

ff⇤ = R�f

N 0
L = span

�
�n = R�pn

 
NL = span

�
pn = Rp�n

 

Proposition

The dual of NL = span{pn}N0
n=1 is the Hilbert space N 0

L = span{�n = p⇤n}
N0
n=1

equipped with the inner product

hf⇤, g⇤iN 0
L
=

N0X

n=1

hpn, f⇤ihpn, g⇤i = hRpf
⇤

| {z }
=f

, g⇤i, f⇤, g⇤ 2 N 0
L.

Summary of operators
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Relations

reproducing kernel

R�{pn} = p⇤n = �n

RpR�{f} = f for all f 2 NL

ProjNL
= (ProjN 0

L
)

⇤

Rp{�n} = pn, n = 1, . . . , N0

R�Rp{f⇤} = f⇤
for all f⇤ 2 N 0

L

ProjN 0
L
= (ProjNL

)

⇤

Description Operator Kernel

Riesz map N 0
L ! NL Rp

N0X

n=1

pn(x)pn(y)

Riesz map NL ! N 0
L R�

N0X

n=1

�n(x)�n(y)

Projector HL ! NL ProjNL

N0X

n=1

pn(x)�n(y)

Projector H0
L ! N 0

L ProjN 0
L

N0X

n=1

�n(x)pn(y)



2.7.2 Conditional positive-definiteness
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, p-conditional positivity where p = (p1, . . . , pN0) represents a basis of N

Classical definition

Let N = span{pn}N0
n=1 be a finite-dimensional subspace of Cb,↵(Rd). Then, the

kernel function h : Rd ⇥ Rd ! R is said to N -conditionally positive-definite if

NX

m=1

NX

n=1

zmh(xm,xn)zn � 0

for any N 2 N, x1, . . . ,xN 2 Rd
, and z1, . . . , zN 2 R, subject to the condition

NX

m=1

zmpn(xm) = 0

for n = 1, . . . , N0. The conditional positive-definiteness is said to be strict if

NX

m=1

NX

n=1

zmh(xm,xn)zn > 0,

under the same conditions with (z1, . . . , zN ) 2 RN\{0} and the xn all being distinct.

(Conditionally) positive-definite operator
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Definition

Let A be a continuous operator S(Rd) ! S 0(Rd) and N some finite-dimensional

subspace of S 0(Rd) spanned by p = (p1, . . . , pN0). The operator A is said to be:

• Symmetric or self-adjoint if, for all '1,'2 2 S(Rd),

hA'1,'2i = hA'2,'1i.

• Positive-definite if, for any ' 2 S(Rd),

hA','i � 0.

• N -conditionally positive-definite (or p-conditionally positive), if

hA','i � 0

for any ' 2 Sp(Rd) = S(Rd) \N? = {' 2 S(Rd) : p(') = 0}.

• Strictly N -conditionally positive-definite if, for all ' 2 Sp(Rd)\{0},

hA','i > 0.



Positive-definiteness: equivalences

37

Direct part

Sequence of test functions 'k =
NX

n=1

znuk(·� xn) 2 S(Rd) such that

lim
k!1

hf,'k(·� xn)i =
NX

n=1

znf(xm)

Indirect part
Making the link with Riemann integrals; i.e.,

hf,'i = limi!1
1

id

(i2,...,i2)X

m=�(i2,...,i2)

f(xm)'(xm)| {z }
zm

, with xm = m
i 2 Rd

Sketch of proof:

uk = kde�
1
2kkxk

2

����!
k!1

�

Theorem

A : ' 7!
Z

Rd

a(·,y)'(y)dy with a(x0, ·) = a(·,x0) 2 Cb,↵(Rd) for any x0 2 Rd

(p-conditional) positive definiteness of A : S(Rd) ! S 0(Rd)

m
(p-conditional) positive-definiteness of continuous kernel a : Rd ⇥ Rd ! R.

2.7.3 Spline-admissible operator
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Definition

A linear operator L : HL ! L2(Rd) is called spline-admissible if there exists

a symmetric kernel GL⇤L : Rd ⇥ Rd ! R, a finite-dimensional subspace NL =

span{pn}N0
n=1 and an order ↵ 2 R of algebraic growth such that :

1. GL⇤L is a Green’s function of (L⇤L) with the property that

L{GL⇤L(·,y)}(x) = GL⇤(x,y) = GL(y,x)

L⇤L{GL⇤L(·,y)} = L⇤{GL⇤(·,y)} = �(·� y)

2. Null-space property: L{q} = 0 for all q 2 NL ✓ HL.

3. GL⇤L is strictly NL-conditionally positive-definite.

4. Continuity and polynomial growth:

GL⇤L(·,y0) 2 Cb,↵(Rd) for any y0 2 Rd
and NL ✓ Cb,↵(Rd).

5. Boundedness on the diagonal: sup
x2Rd |GL⇤L(x,x)| (1 + kxk)2↵ < 1.



Green’s function
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NDm
-conditionally-positive kernel: G(x, y) =

(�1)m

2

|x� y|2m�1

(2m� 1)!

Definition

The kernel GL : Rd ⇥ Rd ! R is a Green’s function of L if L{GL(·,y)} = �(·� y).

, LL�1{'} = ' for any ' 2 S(Rd) where L�1 : ' 7!
Z

Rd

GL(·,y)'(y)dy

Preferred scenario: L is LSI with requency response

bL(!)

GL(x,y) = ⇢L(x� y) with ⇢L(x) = F�1

(
1

bL(!)

)
(x)

Example of admissible operator: Dm = dm

dxm

Green’s function (causal): µ

m

(x) =
x

m�1
+

(m�1)!

Green’s function (canonical): ⇢Dm(x) = F�1

⇢
1

(j!)m

�
(x) = 1

2 sign(x)
x

m�1

(m� 1)!

Null space = polynomials of degree m� 1 : NDm = span{ x

n�1

(n�1)!}
N0
n=1

F ! (j!)m

= canonical Green’s function

2.7.4 RKHS associated with admissible operator
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“Orthogonal” complement of NL in HL

HL,� =
�
f 2 HL : �(f) = 0

 
,

Theorem 3
Let L be an admissible operator and (�,p) a corresponding biorthogonal system

for NL. Then, HL,� is a Hilbert space equipped with the inner product hf, giL =

hL{f},L{g}i. Moreover, there exists an isometric map L�1
� : L2(Rd) ! HL,� such

that

HL,� =
�
f = L�1

� w : w 2 L2(Rd)}.

The operator L�1
� (see next slide) is uniquely specified through the following proper-

ties

1. Right-inverse property: LL�1
� w = w for all w 2 L2(Rd)

2. Boundary conditions: �(L�1
� w) = 0 for all w 2 L2(Rd).



Construction of stable right-inverse
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HL,� ✓ Cb,↵0(Rd) , sup
x2Rd

(1 + kxk)↵0kg
�

(x, ·)kL2(Rd) < 1

Ingredients for construction of L�1
� : L2(Rd) ! HL,� ✓ Cb,↵0(Rd)

Basis for NL: p = (p1, . . . , pN0)

Biorthogonal analysis functionals: � = (�1, . . . ,�N0)

Green’s function GL : Rd ⇥ Rd ! R of L , L{GL(·,y)} = �(·� y)

L�1
� : ' 7!

Z

Rd

g�(·,y)'(y)

g�(x,y) = GL(x,y)�
N0X

n=1

pn(x)qn(y)

qn(y) = h�n, GL(·,y)i = G⇤{�n}(y), n = 1, . . . , N0

42

L2(Rd)
L

L�1
�

HL,�

�(f) = 0

hf, giL = h(L⇤L){f}, gi



2.7.5 Determination of reproducing kernel
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Generalized impulse response of A� = L�1
� L�1⇤

�

Theorem 4

The reproducing kernel of the Hilbert space HL,� specified in Theorem 3 is

a�(x,y) =

Z

Rd

g�(x, z)g�(y, z)dz

where g�(x,y) = L�1
� {�(· � y)}(x). Moreover, if GL⇤L(x,y) is the symmetric

Green’s function of L⇤L, then the reproducing kernel can be expressed as

a�(x,y) = GL⇤L(x,y)�
N0X

n=1

pn(x)vn(y)�
N0X

n=1

vn(x)pn(y) +
N0X

m=1

N0X

n=1

rm,npm(x)pn(y)

with

vn(y) = h�n, GL⇤L(·,y)i =
Z

Rd

�n(z)GL⇤L(z,y)dz

rm,n = h�m ⌦ �n, GL⇤Li =
Z

Rd

Z

Rd

�m(x)�n(y)GL⇤L(x,y)dxdy.

Reproducing kernel and Riesz map
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(L⇤L)A{'} = (L⇤L)A�{'} = ' for all ' 2 S(Rd)

but A (unlike A�) does not admit a stable extension H0
L ! HL

a�(x,y) = GL⇤L(x,y)�
N0X

n=1

pn(x)vn(y)�
N0X

n=1

vn(x)pn(y) +
N0X

m=1

N0X

n=1

rm,npm(x)pn(y)

Link with unregularized inverse A : ' 7!
Z

Rd

GL⇤L(x,y)'(y)dy

vn(y) = h�n, GL⇤L(·,y)i = A⇤{�n}(y) = A{�n}(y)

rm,n = h�m ⌦ �n, GL⇤Li = hA{�m},�ni

Riesz map H0
L,� ! HL,�

A� = L�1
� L�1⇤

� : ' 7!
Z

Rd

a�(·,y)'(y)dy



Characterization of dual space
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Proposition

Let L be an admissible operator and (�,p) a corresponding biorthogonal system for

NL. Then, the continuous dual of the RKHS HL,� is the Hilbert space

H0
L,� = {f⇤ = L⇤w : w 2 L2(Rd)}

equipped with the inner product

hf, giH0 = hL�1⇤
� f,L�1⇤

� giL2(Rd) = hAf⇤, g⇤i

where the operators L�1
� and A are as previously defined. The operator (L⇤L) is

the Riesz map HL,� ! H0
L,� so that any f⇤ = L⇤L{f} 2 H0

L,� can be viewed

as the Riesz conjugate of some corresponding f 2 HL,�. Finally, we have the

“orthogonality” property

p(f⇤) = 0 , p
�
L⇤L{f}� = 0

for any f⇤ 2 H0
L,� and/or f 2 HL,�.

46

L2(Rd)
LL⇤

L�1⇤
� L�1

�

Riesz map: A� = L�1
� L�1⇤

�

H0
L,� HL,�

p(f⇤) = 0 �(f) = 0



Properties of positive operator
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A� = L�1
� L�1⇤

�

Proposition

The operator A� : ' 7! R
Rd a�(·,y)'(y)dy, where a�(·,y) is given in Theorem

3, has the following properties:

1. It is the Riesz map H0
L,� ! HL,� = {f 2 HL : �(f) = 0}.

2. It is bounded H0
L ! HL = HL,� �NL.

3. It has a finite-dimensional null space span{�n}N0
n=1 = N 0

L.

4. It imposes the boundary conditions: �(A�{f⇤}) = 0 for all f⇤ 2 H0
L. In

other words, A� continuously maps H0
L ! HL,�.

5. Relation with unregularized operator A : ' 7! R
Rd GL⇤L(·,y)'(y)dy

8f⇤ 2 H0
L,� : A�{f⇤} = A{f⇤}�

N0X

n=1

hA{�n}, f⇤ipn

8� = p⇤ 2 N 0
L : A�{�} = 0 and A{�} 2 HL

48

(L⇤L)

{0}
NL

span{pn}N0
n=1

{0}
N 0

L

span{�n}N0
n=1

H0
L,� HL,�

H0
L = H0

L,� �N 0
L HL = HL,� �NL

A�



RHKS structure of native space
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HL

Theorem 5
Any f 2 HL = HL,� �NL has a unique representation as

f = L

�1
� w + q

where w = Lf 2 L2(Rd
) and q = ProjNL

{f} =

PN0

n=1hf,�nipn 2 NL. Moreover,

HL equipped with the inner product

hf, giHL = hLf,Lgi+
N0X

n=1

h�n, fih�n, gi

is a RKHS whose reproducing kernel is

h�(x,y) = a�(x,y) +
N0X

n=1

pn(x)pn(y).

Finally, if the operator A meets the admissibility conditions (strict conditional positivity

and ↵-boundedness) and the �n are such that A{�n} 2 Cb,↵(Rd
), then S(Rd

) ✓
HL ✓ Cb,↵(Rd

) ✓ S 0
(Rd

) with the insurance that HL is dense in S 0
(Rd

).

Summary of operators
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reproducing
 kernel

= L{GL⇤L(·,x)}(y) ???

Description Operator Kernel

Right-inverse of L G GL(x,y)

Right-inverse of (L⇤L) A = GG⇤ GL⇤L(x,y)

Stable inverse of L L�1
� GL(x,y)�

N0X

n=1

pn(x)G
⇤{�n}(y)

Riesz map H0
L,� ! HL,� A� a�(x,y)

Riesz map HL,� ! H0
L,� (L⇤L)

Riesz map H0
L ! HL A� +Rp a�(x,y) +

N0X

n=1

pn(x)pn(y)

Riesz map HL ! H0
L (L⇤L) + R�

reproducing kernel

Direct sum decomposition

8� = p⇤ 2 N 0
L : A�{�} = 0

8f̃⇤ 2 H0
L,� : Rp{f̃⇤} = 0

8p 2 NL : (L⇤L){p} = 0

8f̃ 2 HL,� : R�{f̃} = 0



Summary of key relations
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L

�1⇤
� = G

⇤
(Id� ProjN 0

L
)

8w 2 L2(Rd
) : L

�1⇤
� L

⇤{w} = w

8� 2 N 0
L : L

�1⇤
� {�} = 0

L�1⇤
� : H0

L,� ! L2(Rd)L�1
� : L2(Rd) ! HL,� ✓ HL

Riesz map A� : H0
L,� ! HL,� ✓ HL

L

�1
� =

�
Id� ProjN 0

L

�⇤
G =

�
Id� ProjNL

�
G

8w 2 L2(Rd
) : LL

�1
� {w} = w,

8w 2 L2(Rd
) : �(L�1

� w) = 0

A� =

�
Id� ProjNL

��
GG

⇤��
Id� ProjN 0

L

�
= L

�1
� L

�1⇤
�

8� 2 N 0
L : A�{�} = 0

8f⇤ 2 H0
L : �

�
A�{f⇤}� = 0

8 ˜f⇤ 2 H0
L,� : (L

⇤
L)A�{ ˜f⇤} =

˜f⇤

8 ˜f⇤ 2 H0
L,� : A�{ ˜f⇤} = A{ ˜f⇤}+

N0X

n=1

hA{�n}, ˜f⇤ipn

Native space: the bottom line

52

The native space of L is a Hilbert space HL ✓ Cb,↵(Rd) equipped with the inner product

hf, giHL = hLf,Lgi+
N0X

n=1

h�n, fih�n, gi

with �n 2 H0
L where

�
�,p

�
=

�
(�n), (pn)

�
is a biothonormal system for NL = span{pn}N0

n=1 ✓ HL.

If there exists a symmetric NL-conditionally-positive operator A : S(Rd) ! S 0(Rd) such that

(L⇤L)A{'} = ' for all ' 2 S(Rd), then:

HL can be defined as the completion of S(Rd) is the k · kHL -norm.

HL is dense in S 0(Rd).

Any function f 2 Cb,↵(Rd) can be approximated as closely as desired by a kernel

expansion of the form

fK =
KX

k=1

akGL⇤L(·,xk) +
N0X

n=1

bnpn

with a finite number (K +N0) of terms and some (possibly adaptive) centers xk 2 Rd
.

Direct sum structure: HL = HL,� �NL = HL,�̃ �NL where HL,� = {f 2 HL : �(f) = 0}
with the norms induced by the biorthogonal systems (�,p) and (�̃, p̃) being equivalent.
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3. VARIATIONAL SPLINES

54

Perturbed measurements model: ym = h⌫m, fi+ ✏m (m = 1, . . . ,M)

Traditional setting: ym = f(xm) = h�(·� xm), fi

Variational (=minimum energy) solution

f0 = arg min
f2HL

kLfk2L2
s.t. (f(xm) = ym)Mm=1

Minimization of least-squares functional

JLS(f |y,�) =
MX

m=1

�
ym � h⌫m, fi

�2
+ �kLfk2L2

Generalized interpolation problem

Recover f 2 HL from the measurements ym = h⌫m, fi, (m = 1, . . . ,M)



3.1 Regularization induced by an inner product
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JLS(f |y,�) =
MX

m=1

�
ym � h⌫⇤m, fiH

�2
+ �kfk2H = 1

2a(f, f)� v(f) + C0

Linear functional: v(f) = 2
MX

m=1

ymh⌫⇤m, fiH

Bilinear form: a(f1, f2) = 2�hf1, f2iH + 2
MX

m=1

h⌫⇤m, f1iHh⌫⇤m, f2iH

f0 = argminf2H J(f |y,�) , v(f) = a(f0, f) (Condition of optimality)

Effect of measurement functional ⌫m 2 H0
: h⌫m, fi = h⌫⇤m, fiH

Optimization is performed over a Hilbert space H

) f0 2 span{⌫⇤m}Mm=1

with guarantee of unicity (Hilbert’s projection theorem)

Regularized least-squares fit: discretization

56

H: RKHS with reproducing kernel rH : Rd ⇥ Rd ! R

System/Gram matrix : [G]m,n = h⌫m, ⌫⇤ni = h⌫⇤m, ⌫⇤niH =

Z

Rd

Z

Rd

⌫m(x)rH(x,y)⌫n(y)dxdy

) JLS(f |y,�) = J(a|y,�) = ky �Gak22 + �aTGa

Condition for optimality:

@J(a|y,�)
@a

= 2G
�
y � (G+ �IM )a

�
= 0

+ unicity

) y = (G+ �IM )a , a = (G+ �IM )�1y

Solution space parametrized by a = (a1, . . . , aM ) 2 RM

f(x) =
MX

m=1

am⌫⇤m(x), ⌫⇤m(x) =

Z

Rd

rH(x,y)⌫m(y)dy



Generalization: Abstract representer theorem
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Special case: CLS = {z 2 Rd : kz� yk22  �2}

H: Hilbert space with inner product h·, ·iH and Riesz map R : H0 ! H
⌫ : f 7! ⌫(f) = (h⌫1, fi, . . . , h⌫M , fi) is a continuous linear operator HL ! RM that

extracts M measurements from the signal f ;

C: closed convex subset of RM such that its preimage in H is nonempty.

Theorem

The solution of the general convex optimization problem

argmin
f2H

kfk2H s.t. ⌫(f) 2 C

is unique and of the form

f0 =
MX

m=1

am⌫⇤m

with ⌫⇤m = R{⌫m} 2 H and suitable linear weights a = (am) 2 RM
.

Proof (step by step)

58

Null space of ⌫: V? = {f 2 H : hf, ⌫mi = hf, ⌫⇤miH = 0, m = 1, . . . ,M}
) f0 = u0 + u?

0 with ⌫(f0) = ⌫(u0) and ⌫(u?
0 ) = 0

f0 is the minimal-norm solution

kf0k2H = ku0 + u?
0 k2H  ku0k2H , u?

0 = 0 QED, f0 2 V

Unicity of the solution (by Hilbert’s projection theorem)

C convex & closed, ⌫ linear & continuous ) U = ⌫�1(C) convex & closed

Riesz’ representation theorem: h⌫m, fi = h⌫⇤m, fiH with ⌫⇤m = R{⌫m} 2 H

Identification of reconstruction space: V = span{⌫⇤m}Mm=1 ✓ H

Optimization space: H = V � V?

) f = u+ u? with u 2 V and u? 2 V?



Smoothing splines
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fLS = arg min
f 2H

 
MX

m=1

�
ym � f(xm)

�2
+ �kfk2H

!

) aLS = (R+ �IM )�1y

with [R]m,n = hrH(·,xm), rH(·,xn)iH = rH(xm,xn)

H: RKHS with reproducing kernel rH : Rd ⇥ Rd ! R

autocorrelation
matrix

ridge
Statistical linear regression: � / �2

Regularized least-squares fit

and/or ridge regression

kernel estimator

“Ideal” sampling functionals: ⌫m = �(·� xm), (m = 1, . . . ,M)

Solution space parametrized by a = (a1, . . . , aM ) 2 RM

f(x) =
MX

m=1

amrH(x,xm)

Application to machine learning

60

A multivariate function g : RM ! R is said to be coercive if limkzk!1 g(z) = 1.

Definition

A multivariate function g : RM ! R is convex if

g
�
⌧z1 + (1� ⌧)z2)  ⌧g

�
z1) + (1� ⌧)g

�
z2,y)

for all z1, z2 2 RM
and all ⌧ 2 [0, 1]. It is strictly convex if the order relation

holds with a strict inequality for z1 6= z2 and ⌧ 2 (0, 1).

The loss function F : RM ⇥ RM ! R is said to be convex (resp., coercive)

if F (·,y) : RM ! R is convex (resp., coercive) for any fixed y 2 Rd

The “machine learning” problem

Find a function f : Rd ! R such that f(xm) ⇡ ym (with a training set of size M )

Proximity between z(f) =
�
f(x1), . . . , f(xM )

�
and y = (y1, . . . , yM ) is measured

by some loss function F : RM ⇥ RM ! R



Examples of loss functions
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Representer theorem for machine learning

62

Theoretical justification for kernel methods

(Schölkopf-Smola 2001)(Schoenberg 1964, Kimeldorf-Wahba 1971)

F (z(f),y) = kz(f)� yk22

Theorem

The solution of the generic minimization problem

argmin
f2H

�
F
�
z(f),y

�
+ �kfk2H

�
,

where the cost function F is strictly convex, is unique and of the form

f(x) =
MX

m=1

amrH(x,xm)

with suitable linear weights a = (am) 2 RM
.

H ✓ Cb,↵(Rd): RKHS with inner product h·, ·iH and reproducing kernel rH : Rd ⇥ Rd ! R

Sampling operator f 7! z(f) =
�
f(x1), . . . , f(xM )

�
with x1, . . . ,xM 2 Rd

Corresponding data values y = (y1, . . . , yM ) 2 RM



Proof
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f 7! z(f): linear and continuous on H
f 7! F

�
z(f),y

�
: strictly convex and continuous on H

f 7! �kfk2H: strictly convex, continuous and trivially coercive on H

) f0 2 span{rH(·,xm)}Mm=1

Since f0 achieves the minimum, it is also the solution of the interpolation problem

f0 = minf2H kfk2H s.t. z(f) = y0

) Unique solution f0 with “optimal” data term F (y0,y) where y0 = z(f0) 2 RM

Theorem (Classical existence result from convex analysis)

Let X be a reflexive Banach space and J : X ! R a convex, (lower semi-)

continuous, and coercive functional on X . Then, the problem

S = arg inf
x2X

J(x)

admits at least one solution. Moreover, the solution set S is a convex subset of

X which reduces to a single point (unique solution) when J is strictly convex.

3.2 Non-coercive regularization functionals
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Motivation: favors (“smooth”) solution with large null-space component

Theoretical challenge: kLfk2L2
is only a semi-norm !

Variational formulation of linear inverse problems

arg min
f2HL

⇣
F
�
⌫(f),y

�
+ �kLfk2L2(Rd)

⌘

Functional context

Non-trivial null space NL = {f 2 HL : L{f} = 0}

Biorthogonal system (�,p) for NL = span{pn}N0
n=1 with �n 2 H0

L

Native space HL ✓ Cb,↵(Rd) is the Hilbert space equipped with the composite norm

kfkHL =
q

kLfk2L2
+ k�(f)k22



Proper regularization operator
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Definition

The operator L : HL ! L2(Rd) with null space NL = span{pn}N0
n=1 ✓ HL

is a proper regularization operator for the measurement operator ⌫ : f 7!
⌫(f) = (h⌫1, fi, . . . , h⌫M , fi) if the following technical conditions are met:

1. L is spline-admissible

2. ⌫1, . . . , ⌫M 2 H0
L

3. For all q 2 NL, k⌫(q)k2 � 0 with equality if and only if q = 0.

Criterion

The singular values of P = [⌫(p1) · · · ⌫(pN0)] are strictly positive and bounded

, 9c > 0 s.t. kqk2NL
= k�(q)k22  1

ck⌫(q)k
2
2.

Representer theorem for linear inverse problems
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Theorem

The solution of the general minimization problem

arg min
f2HL

F (⌫(f),y) + �kLfk2L2(Rd)

is unique and has the generic linear parametric form

f(�) =
MX

m=1

am'm +
N0X

n=1

bnpn

with 'm = A{⌫m} =

Z

Rd

GL⇤L(·,y)⌫m(y)dy, a = (am) 2 RM
, b = (bn) 2 RN0

,

subject to the “orthogonality” constraint: ha,⌫(pn)i = 0 for n = 1, . . . , N0.

⌫ : f 7! ⌫(f) = (h⌫1, fi, . . . , h⌫M , fi) is a continuous linear operator HL ! RM

that extracts M measurements from the signal f ;

L : HL ! L2(Rd) is a proper regularization operator;

{pn}N0
n=1 is a basis of the null space of the regularization operator;

F : RM ⇥ RM ! R is a strictly convex and coercive loss function;

y 2 RM
is a given data vector and � 2 R+

an adjustable regularization parameter.



Proof
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HL = HL,� �HL , f = L

�1
� w + q with w = Lf , q = ProjNL

{f}

Step 1: Establish existence and unicity

Key relations: kfk2HL
= kwk2L2

+ k�(q)k22 and ck�(q)k2  k⌫(q)k2

Coercivity of J : kLfk2L2
! 1 as kwkL2 ! 1,

while F
�
⌫(L�1

� w) + ⌫(q),y
�
! 1 as k�(q)k2 ! 1

Minimization of J(f |y,�) = F (⌫(f),y) + �kLfk2L2(Rd)

Continuity of J : directly follows from continuity of f 7! kLfk2L2
, ⌫, and F (·,y).

Strict-convexity of J : follows from strict convexity of J and F (·,y), and linearity of ⌫.

Proof (Cont.)
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Step 2: Generic form of solution

Minimizer: f0 such that ⌫(f0) = y0 2 RM
and �(f0) = c0 = (c1, . . . , cN0) 2 RN0

f0 =

˜f0 + q0 with

˜f0 = f0 � q0 2 HL,�, q0 = ProjNL
{f0} 2 NL

subject to �( ˜f0) = 0 ) �(q0) = c0, and ⌫( ˜f0) = y0 � ⌫(q0)

(by Abstract representer theorem)) f0 =
MX

m=1

amA�{⌫m}+
N0X

n=1

cnpn

f0 = A�

(
MX

m=1

am⌫m

)
+

N0X

n=1

cnpn = A

(
MX

m=1

am⌫m

)
+

N0X

n=1

bnpn

(using relation between A� and A for f⇤ 2 H0
L,�)

Direct sum decomposition in HL = HL,� �HL

) q0 =
N0X

n=1

cnpn and f̃0 = arg min
f̃2HL,�

kf̃k2HL,�
s.t. ⌫(f̃) = y0 � ⌫(q0)

Orthogonality property: f̃⇤
0 = (L⇤L){f̃0} =

MX

m=1

am⌫m 2 H0
L,� ? NL



3.3 Discretization and numerical solution
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Additional system matrix P 2 RM⇥N0
: [P]m,n = h⌫m, pni =

Z

Rd

⌫m(x)pn(x)dx

=

Z

Rd

Z

Rd

⌫m(x)GL⇤L(x,y)⌫n(y)dxdy

) J(f |y,�) = J(a,b|y,�) = F (Ga+Pb,y) + �aTGa

System/Gram matrix G 2 RM⇥M
: [G]m,n = h⌫m,'ni = h⌫m,A{⌫n}i = h'm,'niH

Finite-dimensional solution space

VL,⌫ = {f = 'Ta+ pTb : a 2 RM ,b 2 RN0} ✓ HL

where ' = ('1, . . . ,'M ) with 'n = A{⌫n} and p = (p1, . . . , pN0)

Exact discretization

Discrete optimization problem
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arg min
a2RM ,b2RN0

�
F (Ga+Pb,y) + � aTGa

 

Initialization: (a0,b0)

ak+1 = ak � ⌧G
⇣
rF (Gak +Pbk,y) + 2�ak

⌘

bk+1 = bk � ⌧PT rF (Gak +Pbk,y)

Until stop criterion

Steepest descent algorithm



Least-squares approximation problem
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J(a,b|y,�) = kGa+Pb� yk22 + �aTGa

Extreme case: � ! 1

a(1) = 0 and b(1) = (PTP)�1PTy

)
 

a

b

!
=

 
(G+ �I) P

PT 0

!�1 
y

0

!

@J(a,b|y,�)
@a

= 2G
⇣
(G+ �I)a+Pb� y

⌘
= 0

@J(a,b|y,�)
@b

= 2PT (Ga+Pb� y) = 0

= argmin
b

kPb� yk22
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